

CE EMC Test Report (EN 50155 & EN 50121-3-2)

Report No.: CEBDBO-WTW-P20070557-1

Test Model: EXBC-2000S-8665U

marketing purpose)

Received Date: Jul. 28, 2020

Test Date: Jul. 30 ~ Aug. 05, 2020

Issued Date: Aug. 19, 2020

Applicant: Vecow Co., Ltd.

Address: 3F., No.10, Jiankang Rd., Zhonghe Dist., New Taipei City 23586, Taiwan

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City

33383, TAIWAN

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Report No.: CEBDBO-WTW-P20070557-1 Page No. 1 / 52 Report Format Version: 6.1.3

Table of Contents

Rele	Release Control Record4			
1	Certificate of Conformity	. 5		
2	Summary of Test Results	. 6		
2.2 2.2 2.3	2 Measurement Uncertainty	8		
3	General Information	. 9		
3.2 3.2 3.4 3.8 3.6	Features of EUT	9 0 0 1		
4	Configuration and Connections with EUT			
4.2 4.2	J			
5	Conducted Disturbance at Auxiliary a.c. Power Ports	15		
5.2 5.2 5.2 5.4	Test Instruments	5 6		
6	Radiated Disturbance up to 1 GHz	19		
6.2 6.2 6.4	Test Instruments	9 0		
7	Radiated Disturbance above 1 GHz	23		
7.2 7.2 7.3 7.4	Test Instruments 24 Test Arrangement 29 Test Results 20	4 5 6		
8	Electrostatic Discharge Immunity Test (ESD)			
8.2 8.2 8.3	Test Instruments 28 Test Arrangement 29	8 9		
9	Radiated, Radio-frequency, Electromagnetic Field Immunity Test (RS)	34		
9.2 9.3 9.4	Test Instruments 34 Test Arrangement 34 Test Results 35	4 5 5		
	Electrical Fast Transient/Burst Immunity Test (EFT)			
10 10 10 10 10	1.2 Test Instruments 30 1.3 Test Arrangement 31 1.4 Supplementary Information 31	6 7 7		

11	Surge Immunity Test	39
11.	.1 Test Specification	39
11.		
11.	.3 Test Arrangement	40
11.	.4 Test Results	41
12	Immunity to Conducted Disturbances Induced by RF Fields (CS)	42
12.	.1 Test Specification	42
12.		
12.	.3 Test Arrangement	43
12.	.4 Test Results	44
13	Pictures of Test Arrangements	45
13.	.1 Conducted Disturbance at Auxiliary a.c. power ports	45
13.	· · · ·	
13.		47
13.		
13.	.5 Radio-frequency, Electromagnetic Field Immunity Test (RS)	48
13.	.6 Electrical Fast Transient/Burst Immunity Test (EFT)	49
13.	.7 Surge Immunity Test	50
13.	.8 Conducted Disturbances Induced by RF Fields (CS)	50
Арр	endix – Information of the Testing Laboratories	52

Release Control Record

Issue No.	Description	Date Issued
CEBDBO-WTW-P20070557-1	Original Release	Aug. 19, 2020

1 Certificate of Conformity

Product: EXBC-2000 Series

Brand: Vecow

Test Model: EXBC-2000S-8665U

purpose)

Sample Status: Engineering Sample

Applicant: Vecow Co., Ltd.

Test Date: Jul. 30 ~ Aug. 05, 2020

Standards: EN 50155:2017, Clause 13.4.8

EN 50121-1:2017

EN 50121-3-2:2016

EN 61000-4-2:2009

EN 61000-4-3:2006 +A1:2008 +A2:2010

EN 61000-4-4:2012

EN 61000-4-5:2014 +A1:2017 EN 61000-4-6:2014 +AC:2015

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

	Lena	Wang		
Prepared by :		J	, Date:	Aug. 19, 2020

Lena Wang / Specialist

Approved by : , **Date:** Aug. 19, 2020

Carl Chen / Project Engineer

2 Summary of Test Results

EN 50121-3-2:2016, Emission EN 50155:2017, Clause 13.4.8			
Port	Test Item / specifications	Result/Remarks	Verdict
Auxiliary a.c. or d.c. power ports - Auxiliary supply sinusoidal a.c. or d.c.	Conducted disturbance 150 kHz- 500 kHz: 99 dBµV quasi-peak 500 kHz- 30 MHz: 93 dBµV quasi-peak	Minimum passing margin is -53.63 dB at 1.23107 MHz	Pass
Auxiliary a.c. or d.c. power ports – AC power outlet port for	Conducted disturbance 50 kHz- 2 kHz: THD<8% (THD: total harmonic distortion)	Test not applicable because the port does not exist.	N/A
Battery referenced ports Battery power supply	Conducted disturbance 150 kHz- 500 kHz: 99 dBµV quasi-peak 500 kHz- 30 MHz: 93 dBµV quasi-peak	Test not applicable because the port does not exist.	N/A
Enclosure	Radiated disturbance 30 MHz- 230 MHz: 40 dBµV/m quasi-peak 230 MHz -1 GHz: 47 dBµV/m quasi-peak	Minimum passing margin is -7.56 dB at 183.75 MHz	Pass
- Enclosure	Radiated disturbance 1 GHz- 3 GHz: 76 dBµV/m peak 56 dBµV/m average 3 GHz - 6 GHz: 80 dBµV/m peak 60 dBµV/m average	Minimum passing margin is -20.30 dB at 1197.11 MHz	Pass

	EN 50121-3-2:2016, Immunity requirements, EN 50155:2017, Clause 13.4.8				
Table Clause	Basic standard	Port	Test Item / specifications	Result/Remarks	Verdict
3.1	EN 61000-4- 6:2014 + AC:2015	Battery referenced ports (except at the output of energy sources), Auxiliary a.c. power input ports (rated voltage ≤ 400 Vrms)	Radio-frequency common mode (CS) 80% AM (1kHz) 0.15-80 MHz, 10V Performance Criterion A	Performance Criterion A	Pass
3.2	EN 61000-4- 4:2012	Battery referenced ports (except at the output of energy sources), Auxiliary a.c. power input ports (rated voltage ≤ 400 Vrms)	Fast Transients (EFT) 5/50 (T _r /T _h) ns, 5kHz ±2kV Performance Criterion A	Meets the manufacturer's requirements of performance.	Pass
3.3	Battery referenced ports (except at the output of energy sources), Auxiliary a.c. power input ports (rated voltage < 400 Vrms)		Surges 1.2/50 (8/20) (T_r/T_h) μ s Line to ground: $\pm 2kV$ 42 Ω , 0.5 μ F Line to line: $\pm 1kV$ 42 Ω , 0.5 μ F Performance Criterion B	Performance Criterion A	Pass

	EN 50121-3-2:2016, Immunity requirements, EN 50155:2017, Clause 13.4.8				
Table Clause	Basic standard	Port	Test Item / specifications	Result/Remarks	Verdict
4.1	EN 61000-4- 6:2014 + AC:2015	Signal & communication, process measurement & control ports	Radio-frequency common mode (CS) 80% AM (1kHz) 0.15-80 MHz, 10V Performance Criterion A	Performance Criterion A	Pass
4.2	EN 61000-4- 4:2012	Signal & communication, process measurement & control ports	Fast Transients (EFT) 5/50 (T _r /T _h) ns, 5kHz ±2kV, Capacitive clamp Performance Criterion A	Meets the manufacturer's requirements of performance.	Pass
5.1	EN 61000-4- 3:2006 + A1:2008 + A2:2010	Enclosure ports	Radio-frequency electromagnetic field amplitude modulated (RS) ¹ , 80% AM (1kHz) 80-800 MHz, 20V/m	Performance Criterion A	Pass
5.2	EN 61000-4- 3:2006 + A1:2008 + A2:2010	Enclosure ports	Performance Criterion A Radio-frequency electromagnetic field from digital mobile telephones (RS)², 80% AM (1kHz) 800-1000 MHz, 20V/m 1400-2000 MHz, 10V/m 2000-2700 MHz, 5V/m 5100-6000 MHz, 3V/m Performance Criterion A	Performance Criterion A	Pass
5.3	EN 61000-4- 2:2009	Enclosure ports	Electrostatic Discharges (ESD) ±6kV Contact discharge ±8kV Air discharge Performance Criterion B	Performance Criterion B	Pass

Note 1: This limit applies to equipment mounted in the passenger compartments, drivers cab or external to the rolling stock (roof, underframe). For equipment mounted in all other areas a severity level of 10 V/m may be used.

Note 2: For large apparatus (e.g. traction drives, auxiliary converters) it is often not practical to perform the immunity test to radiated electromagnetic fields on the complete unit. In such cases the manufacturer should test susceptible sub-systems (e.g. control electronics). The test report should justify the selection or not of sub-systems and any assumptions made (e.g. reduction of field due to case shielding).

N/A: Not Applicable

- 1. There is no deviation to the applied test methods and requirements covered by the scope of this report.
- 2. The above EN basic standards are applied with latest version if customer has no special requirement.
- 3. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Performance Criteria

General Performance Criteria

The general performance criteria apply for those ports for which no specific performance criteria are defined (e.g. auxiliary ports) in the report.

Performance criterion A: The apparatus shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended..

Performance criterion B: The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the apparatus is used as intended. The performance level may be replaced by a permissible loss of performance. During the test, degradation of performance is however allowed. No change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.

Performance criterion C: Temporary loss of function is allowed, provided the function is selfrecoverable or can be restored by the operation of the controls.

2.2 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Expanded Uncertainty (k=2) (±)	Maximum allowable uncertainty (±)
Conducted disturbance at mains port using AMN, 150 kHz ~ 30 MHz	2.79 dB	3.4 dB (<i>U</i> _{cispr})
Radiated disturbance, 30 MHz ~ 1 GHz	4.14 dB	6.3 dB (<i>U</i> cispr)
Radiated disturbance, 1 GHz ~ 6 GHz	2.29 dB	5.2 dB (<i>U</i> cispr)

2.3 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	EXBC-2000 Series
Brand	Vecow
Test Model	EXBC-2000S-8665U
Series Model	EXBC-2XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Model Difference	Refer to Note as below
Status of EUT	Engineering Sample
Operating Software	N/A
Power Supply Rating	24 Vdc (Adapter)
Accessory Device	Refer to Note as below
Data Cable Supplied 1.5m non-shielded DC cable with 1 core	

Note:

- 1. This report issued as a duplicate report to BV CPS report no. CEBDBO-WTW-P20070556-1. The difference compared with original report is changing model name and product name. The change is no effect on any test items, therefore the original test result is kept
- 2. All models are listed as below.

Brand	Model	Difference
	EXBC-2000S-8665U	All models are electrically identical,
	EXBC-2XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	different model names are for marketing purpose.

3. The EUT is authorized for use in specific End-product. Please refer to below table for more details.

Brand	Model	Difference
		All models are electrically identical,
Vecow	ABP-3XXXXXXXXXXXXXXX ("X" can be 0-9, A-Z or blank for marketing purpose)	different model names are for marketing purpose.

4. The following accessory was for the End-product.

Product	Brand	Model	Description
			I/P: 100-240 Vac, 50-60 Hz, 1.8 A
Adapter	FSP	FSP120-AAAN2	O/P: 24 Vdc, 5 A
			1.5 m non-shielded DC cable with 1 core
CPU	Intel	i7-8665UE	Intel Core i7-8665UE @ 1.70GHz
Memory 1	Vecow	VMD4NIT-08G00A	8GB DDR4-2666-19 SODIMM WT
Memory 2	Vecow	VMD4NIT-16G00A	16GB DDR4-2666-19 SODIMM WT
M.2	UD info	N/A	960GB
Motherboard	Vecow	EXBC-2000S- 8665U	

3.2 Features of EUT

The tests reported herein were performed according to the method specified by Vecow Co., Ltd., for detailed feature description, please refer to the manufacturer's specifications or user's manual.

3.3 Operating Modes of EUT and Determination of Worst Case Operating Mode

The EUT is designed with AC power of rating 100-240 Vac, 50/60 Hz

EUT has been pre-tested under following test modes, and test mode 1 was the worst case for final test.

Mode	Test Condition
4	EUT + Full System + LAN 1 & 2 (1Gbps) Link + POE LAN 3 & 4 to CCD (100Mbps) Link + DP 1 &
1	2 (3840*2160) + USB to HDD R/W + Adapter, 230V/50Hz
	EUT + Full System + LAN 1 & 2 (1Gbps) Link + POE LAN 3 & 4 to CCD (100Mbps) Link + DP 1 &
2	2 (3840*2160) + USB to HDD R/W + Adapter, 110V/60Hz
3	EUT + Full System + LAN 1 & 2 (1Gbps) Link + POE LAN 3 & 4 to CCD (100Mbps) Link + DP 1 &
3	2 (2560*2048) + USB to HDD R/W + Adapter
4	EUT + Full System + LAN 1 & 2 (1Gbps) Link + POE LAN 3 & 4 to CCD (100Mbps) Link + DP 1 &
4	2 (1920*1080) + USB to HDD R/W + Adapter
5	EUT + Full System + LAN Idle + POE LAN 3 & 4 to CCD Idle + DP 1 & 2 (3840*2160) + USB to
	HDD R/W + Adapter

Test modes are presented in the report as below.

Mode	Test Condition					
	Conducted emission test					
EUT + Full System + LAN 1 & 2 (1Gbps) Link + POE LAN 3 & 4 to CCD (100Mbps) Link + DP 1 2 (3840*2160) + USB to HDD R/W + Adapter						
	Radiated emission test					
-	EUT + Full System + LAN 1 & 2 (1Gbps) Link + POE LAN 3 & 4 to CCD (100Mbps) Link + DP 1 & 2 (3840*2160) + USB to HDD R/W + Adapter					
	Harmonics, Flicker, Immunity tests					
-	EUT + Full System + LAN 1 & 2 (1Gbps) Link + POE LAN 3 & 4 to CCD (100Mbps) Link + DP 1 & 2 (3840*2160) + USB to Flash R/W + Adapter					

3.4 Test Program Used and Operation Descriptions

<Emission Tests>

- a. The EUT powered by adapter and placed on the test table.
- b. The EUT linked with Notebook via LAN cable.
- c. The camera powered by EUT through LAN.
- d. The EUT sent audio signal to the earphone / Microphone.
- e. The EUT read and wrote data with HDD via USB Cable.
- f. The EUT sent "H" patterns to monitors, and monitors displayed them via DP Cable.
- g. The EUT linked with Mouse and Keyboard via USB cable.
- h. The EUT linked with TERMINAL.
- i. The EUT communicated data with the Notebooks, which acted as communication partners.

<lmmunity Tests>

- a. The EUT powered by adapter and placed on the test table.
- b. The EUT linked with Notebook via LAN cable.
- c. The camera powered by EUT through LAN.
- d. The EUT sent audio signal to the earphone.
- e. The EUT read and wrote data with Flash.
- f. The EUT sent "H" patterns to monitors, and monitors displayed them via DP Cable.
- g. The EUT linked with Mouse and Keyboard via USB cable.
- h. The EUT linked with TERMINAL.
- i. The EUT communicated data with the Notebooks, which acted as communication partners.

3.5 Primary Clock Frequencies of Internal Source

The highest frequency generated or used within the EUT or on which the EUT operates or tunes is 1.9 GHz, provided by Vecow Co., Ltd., for detailed internal source, please refer to the manufacturer's specifications.

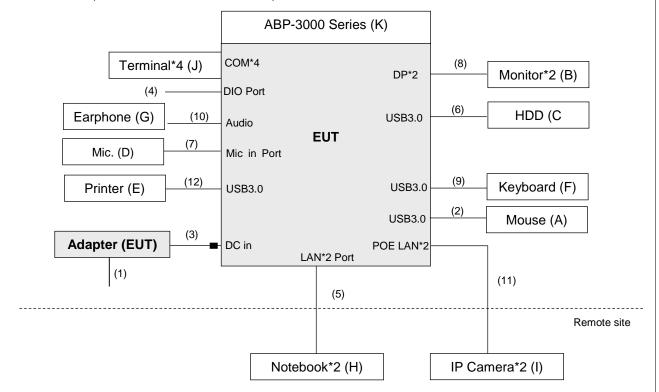
3.6 Miscellaneous

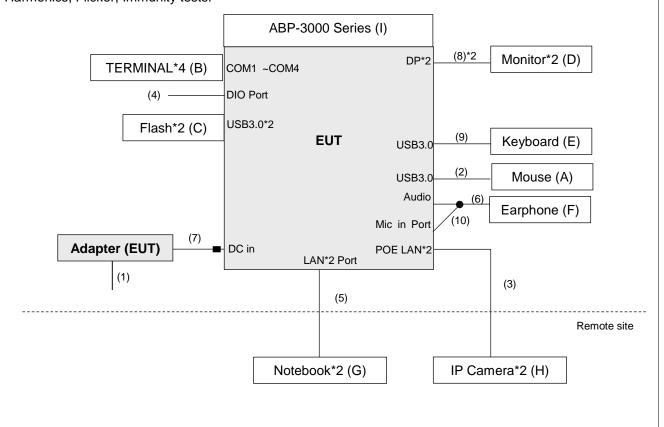
Affix CE marking

The marking must be placed visibly and legibly on the product or, if not possible due to the nature of the product, be affixed to the packaging and the accompanying document. The CE marking shall consist of the initials 'CE' taking the following form:

The various components of the CE marking must have the same vertical dimension, and may not be smaller than 5 mm. If the CE marking is reduced or enlarged, the proportions given in the graduated drawing above must be respected.

When the product is subject to other Directives covering other aspects and which also provide for the 'CE' marking, the accompanying documents must indicate that the product also conforms to those other Directives.


However, when one or more of those Directives allow the manufacturer, during a transitional period, to choose which arrangements to apply, the 'CE' marking has to indicate conformity only with the Directives applied by the manufacturer. In this case, the particularities of the Directives applied, as published in the Official Journal of the European Union, must be given in the documents, notices or instructions required by the Directives and accompanying such products.


4 Configuration and Connections with EUT

4.1 Connection Diagram of EUT and Peripheral Devices

Emission tests (Harmonics & Flicker excluded):

Harmonics, Flicker, Immunity tests:

4.2 Configuration of Peripheral Devices and Cable Connections

Emission tests (Harmonics & Flicker excluded):

	Emission tests (Hamionics & Flicker excluded).								
ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks			
A.	Mouse	DELL	MOCZUL	CN-049TWY-PRC00- 79E-02FW	N/A	-			
)		ASUS	MX27U	H3LMRS034164	N/A	1			
В.	Monitor	A303	IVIXZIO	J3LMRS000059	N/A				
C.	3.0 HDD	TOSHIBA	DTB305	45TGCNNST3ZB	N/A				
D.	MICROPHONE	Labtec	LVA7313	N/A	N/A				
E.	Printer	EPSON	T22	MEEZ070220	N/A				
F.	Keyboard	Dell	KB216t	CN-0W33XP-LO300- 79R-OUG6-A03	N/A				
G.	Earphone	PHILIPS	SBC HL150	NA	N/A				
		DELL	E6440	6QLNM32	N/A				
H.	Notebook	DELL	E6440	FMLNM32	N/A	- -			
I.	IP Camera*2	N/A	N/A	N/A	N/A	Provided by client			
J.	TERMINAL*4	N/A	N/A	N/A	N/A	Provided by client			
K.	ABP-3000 Series	Vecow	ABP-3000-8665U	N/A	N/A	Provided by client			

Note:

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Items H acted as communication partners to transfer data.

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	AC Power Cable	1	1.8	N	0	
2.	Mouse Cable	1	1.8	Υ	0	
3.	DC Cable	1	1.5	Ν	1	Provided by client
4.	DIO Cable	1	0.5	Ν	0	Provided by client
5.	LAN Cable	2	10	N	0	RJ45, Cat5e
6.	3.0 HDD Cable	2	0.5	Υ	0	
7.	Mic Cable	1	1.5	N	0	
8.	DP Cable	2	1.8	Υ	0	
9.	Keyboard Cable	1	1.8	Υ	0	
10.	Earphone Cable	1	1.2	Ν	0	
11.	LAN Cable	2	10	N	0	RJ45, Cat5e
12.	USB Cable	1	1.8	Υ	0	

Note:

- 1. The core(s) is(are) originally attached to the cable(s).
- 2. The test condition of setup was according to manufacturer's requirement.

Harmonics, Flicker, Immunity tests:

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
^	A. Mouse	DELL	NO.44 B	CN-011D3V-71581-1CJ-	FCC DoC	
A.		DELL	MS111-P	093M	Approved	
B.	TERMINAL*4	N/A	N/A	N/A	N/A	Provided by client
C.	Flash*2	Kingston	N/A	N/A	N/A	16GB
-		AOC	U2868PQU	HCXE8JA000360	DOC	
D.	Monitor	ASUS	MX27U			
E.	IZ av da a a wal	DELL	KB4021	CN-05V23T-71581-1AK-	FCC DoC	
□.	Keyboard	DELL	ND4021	01KM-A01	Approved	
F.	Earphone	Apple	MNHF2AM/A	N/A	N/A	
		Dell	E5420	55CF4S1	N/A	
G.	Notebook	DELL	E6440	H4FNM32	N/A	
H.	IP Camera*2	N/A	N/A	N/A	N/A	Provided by client
l.	ABP-3000 Series	Vecow	ABP-3000-8665U	N/A	N/A	Provided by client

Note:

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Items G acted as communication partners to transfer data.

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	AC Power Cable	1	1.8	N	0	
2.	Mouse Cable	1	1.8	Υ	0	
3.	LAN Cable	2	3	N	0	Cat5e
4.	DIO Cable	1	0.5	N	0	Provided by client
5.	LAN Cable	2	3	Ν	0	Cat5e
6.	Earphone Cable	1	1.3	Ν	0	
7.	DC Cable	1	1.5	Ν	1	Provided by client
8.	DP Cable	2	1.8	Υ	0	
9.	Keyboard Cable	1	1.8	Y	0	
10.	Audio Cable	1	0.1	N	0	

Note:

- 1. The core(s) is(are) originally attached to the cable(s).
- 2. The test condition of setup was according to manufacturer's requirement.

5 Conducted Disturbance at Auxiliary a.c. Power Ports

5.1 Limits

Frequency (MHz)	Quasi-peak, (dBuV)
0.15 - 0.5	99
0.5 - 30	93

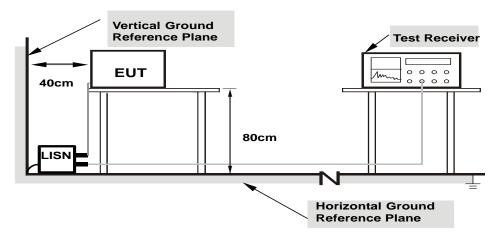
Notes: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases linearly with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

5.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Dec. 11, 2019	Dec. 10, 2020
RF signal cable Woken	5D-FB	Cable-cond1-01	Sep. 05, 2019	Sep. 04, 2020
AMN ROHDE & SCHWARZ (EUT)	ENV216	101826	Feb. 20, 2020	Feb. 19, 2021
AMN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Aug. 22, 2019	Aug. 21, 2020
Software ADT	BV ADT_Cond_ V7.3.7.4	NA	NA	NA

Notes: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


- 2. The test was performed in HwaYa Shielded Room 1. (Conduction 1)
- 3. The VCCI Site Registration No. is C-12040.

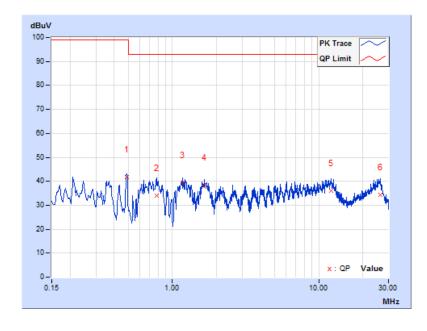
5.3 Test Arrangement

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The test results of conducted emissions at mains ports are recorded of six worst margins for quasi-peak (mandatory) [and average (if necessary)] values against the limits at frequencies of interest unless the margin is 20 dB or greater.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

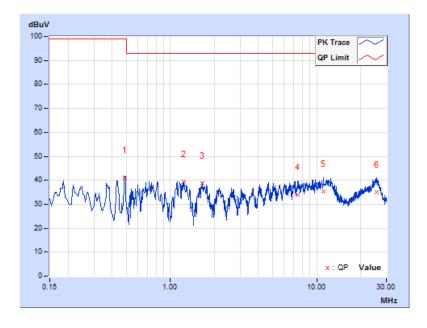

5.4 Test Results

Frequency Range	150kHz ~ 30MHz		Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	230Vac, 50Hz	Environmental Conditions	23℃, 72%RH
Tested by	Slash Huang	Test Date	2020/7/31

	Phase Of Power : Line (L)								
	Frequency	Correction	Reading Value	Emission Level	Limit	Margin			
No		Factor	(dBuV)	(dBuV)	(dBuV)	(dB)			
	(MHz)	(dB)	Q.P.	Q.P.	Q.P.	Q.P.			
1	0.48700	9.65	32.18	41.83	99.00	-57.17			
2	0.77800	9.67	24.25	33.92	93.00	-59.08			
3	1.17000	9.69	29.67	39.36	93.00	-53.64			
4	1.65796	9.71	28.72	38.43	93.00	-54.57			
5	12.19000	9.88	26.11	35.99	93.00	-57.01			
6	26.38600	9.91	24.60	34.51	93.00	-58.49			

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



Frequency Range	150kHz ~ 30MHz		Quasi-Peak (QP) / Average (AV), 9kHz
Input Power	230Vac, 50Hz	Environmental Conditions	23℃, 72%RH
Tested by	Slash Huang	Test Date	2020/7/31

Phase Of Power : Neutral (N)								
	Frequency	Correction	Reading Value	Emission Level	Limit	Margin		
No		Factor	(dBuV)	(dBuV)	(dBuV)	(dB)		
	(MHz)	(dB)	Q.P.	Q.P.	Q.P.	Q.P.		
1	0.48957	9.67	31.35	41.02	99.00	-57.98		
2	1.23107	9.71	29.66	39.37	93.00	-53.63		
3	1.65796	9.74	28.87	38.61	93.00	-54.39		
4	7.45000	9.87	24.10	33.97	93.00	-59.03		
5	11.17800	9.93	25.42	35.35	93.00	-57.65		
6	25.71000	10.05	25.08	35.13	93.00	-57.87		

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

6 Radiated Disturbance up to 1 GHz

6.1 Limits

Frequency (MHz)	dBuV/m (at 10m) / quasi-peak
30 - 230	40
230 - 1000	47

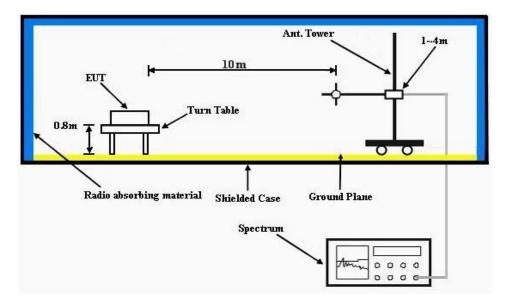
Notes: 1. The lower limit shall apply at the transition frequencies.

- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

6.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ (V)	ESR	101240	Oct. 31, 2019	Oct. 30, 2020
Test Receiver ROHDE & SCHWARZ (H)	ESR	101264	Apr. 16, 2020	Apr. 15, 2021
BILOG Antenna SCHWARZBECK (V)	VULB9168	9168-148	Nov. 08, 2019	Nov. 07, 2020
BILOG Antenna SCHWARZBECK (H)	VULB9168	9168-156	Nov. 08, 2019	Nov. 07, 2020
Preamplifier Sonoma (V)	310N	352924	Jun. 08, 2020	Jun. 07, 2021
Preamplifier Sonoma (H)	310N	352923	Jun. 08, 2020	Jun. 07, 2021
RF signal cable (with 5dB PAD) Times (V)	LMR-600 (18M) +LMR- 400 (7M)	CABLE-CH1 (VER) -01	Sep. 05, 2019	Sep. 04, 2020
RF signal cable (with 5dB PAD) Times (H)	LMR-600 (11.8M) +LMR-400 (7M)	CABLE-CH1 (HOR) -01	Sep. 05, 2019	Sep. 04, 2020
Software BV ADT	BV ADT_Radiated_ V8.7.08	NA	NA	NA
Antenna Tower (V)	MFA-440	9707	NA	NA
Antenna Tower (H)	MFA-440	970705	NA	NA
Turn Table	DS430	50303	NA	NA
Controller (V)	MF7802	074	NA	NA
Controller (H)	MF7802	08093	NA	NA

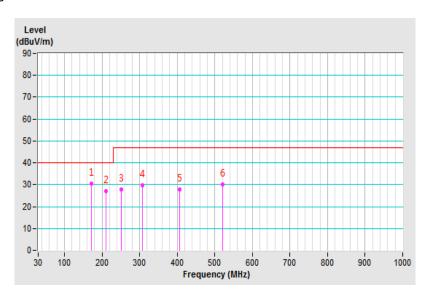
Notes: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


- 2. The test was performed in HwaYa Chamber 1.
- 3. The VCCI Site Registration No. is R-11893.

6.3 Test Arrangement

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at an accredited test facility. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is up to 1 GHz.

Note: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for quasipeak detection (QP) at frequency up to 1 GHz.

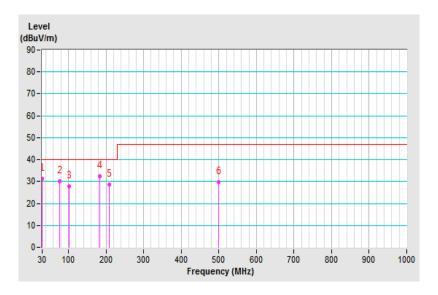

6.4 Test Results

Frequency Range	30MHz ~ 1GHz	Detector Function & Bandwidth	Quasi-Peak (QP), 120kHz
Tested by	Mick Chou	Environmental Conditions	26℃, 69%RH
Test Date	2020/7/30		

	Antenna Polarity & Test Distance : Horizontal at 10 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	172.02	30.57 QP	40.00	-9.43	4.00 H	228	44.47	-13.90
2	210.28	27.22 QP	40.00	-12.78	3.50 H	216	43.43	-16.21
3	251.90	27.86 QP	47.00	-19.14	3.50 H	93	42.14	-14.28
4	307.19	29.88 QP	47.00	-17.12	4.00 H	82	42.21	-12.33
5	405.65	27.92 QP	47.00	-19.08	2.50 H	277	38.03	-10.11
6	520.89	30.19 QP	47.00	-16.81	2.50 H	219	37.54	-7.35

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value



Frequency Range	30MHz ~ 1GHz	Detector Function & Bandwidth	Quasi-Peak (QP), 120kHz
Tested by	Mick Chou	Environmental Conditions	26℃, 69%RH
Test Date	2020/7/30		

	Antenna Polarity & Test Distance : Vertical at 10 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	30.34	31.29 QP	40.00	-8.71	1.50 V	292	46.42	-15.13
2	75.69	30.23 QP	40.00	-9.77	3.00 V	78	47.11	-16.88
3	101.88	27.79 QP	40.00	-12.21	1.00 V	47	45.67	-17.88
4	183.75	32.44 QP	40.00	-7.56	1.00 V	13	48.00	-15.56
5	209.36	28.49 QP	40.00	-11.51	1.00 V	16	45.29	-16.80
6	499.99	29.89 QP	47.00	-17.11	1.00 V	193	38.25	-8.36

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

7 Radiated Disturbance above 1 GHz

7.1 Limits

Fraguenay (CHz)	(dBuV/m) (at 3 m)		
Frequency (GHz)	Average	Peak	
1 to 3	56	76	
3 to 6	60	80	

Notes:

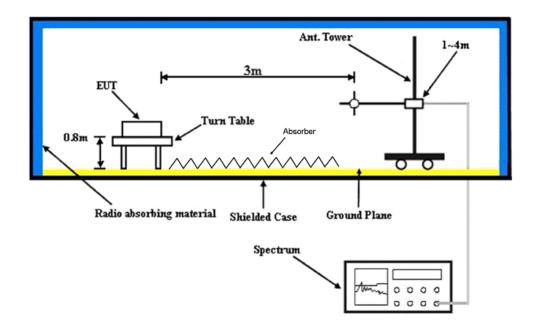
- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

Frequency Range (For unintentional radiators)

Highest frequency generated or used in the EUT or on which the EUT operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 108	1000
108-500	2000
500-1000	5000
Above 1000	Up to 5 times of the highest frequency or 6 GHz, whichever is less

7.2 Test Instruments

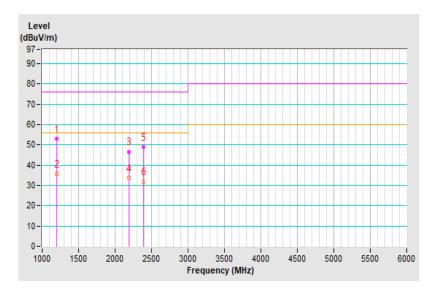
Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ (Above 1GHz)	ESR7	101471	Mar. 11, 2020	Mar. 10, 2021
Spectrum Analyzer Agilent	E4446A	MY51100039	Sep. 05, 2019	Sep. 04, 2020
RF signal cable (with 5dB PAD) Times	LMR-400 (18M)	CABLE-CH2-01	Mar. 23, 2020	Mar. 22, 2021
HORN Antenna (with 4dB PAD) SCHWARZBECK	BBHA 9120 D	9120D-405	Nov. 24, 2019	Nov. 23, 2020
Pre-Amplifier Agilent (Above 1GHz)	8449B	3008A01961	Sep. 05, 2019	Sep. 04, 2020
RF Coaxial Cable JUNFLON+EMC	JUNFLON+EMC104- SM-SM-6000	Cable-CH2- 02(MWX3221308G003+ 130710)	Jan. 18, 2020	Jan. 17, 2021
Software BV ADT	BV ADT_Radiated_ V8.7.08	NA	NA	NA
Software BV ADT	BV ADT_Radiated_ V8.7.08	NA	NA	NA
Antenna Tower BV ADT	AT100	AT93021702	NA	NA
Turn Table BV ADT	TT100	TT93021702	NA	NA
RF Coaxial Cable EMCI	EMC102-KM-KM-1000	170819	Oct. 08, 2019	Oct. 07, 2020
RF Coaxial Cable Rosnol	K1K50-UP0279- K1K50-3000	181129-1	Oct. 08, 2019	Oct. 07, 2020


- Notes: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
 - 2. The 3 dB beamwidth of the horn antenna is minimum 30 degree (or w = 1.6 m at 3 m distance) for $1\sim6$ GHz.
 - 3. The test was performed in HwaYa Chamber 2 (966 Chamber 1).
 - 4. The VCCI Site Registration No. is G-10018.

7.3 Test Arrangement

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at an accredited chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna can be varied from one meter to four meters, the height of adjustment depends on the EUT height and the antenna 3 dB beamwidth both, to detect the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The spectrum analyzer system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.

Note: The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz for Average detection (AV) at frequency above 1 GHz.

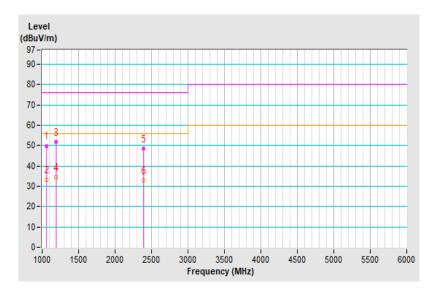

7.4 Test Results

Frequency Range	1GHz ~ 6GHz	Detector Function & Bandwidth	Peak (PK) / Average (AV), 1MHz
Tested by	Kai Chu	Environmental Conditions	23℃, 71%RH
Test Date	2020/7/31		

	Antenna Polarity & Test Distance : Horizontal at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	1197.11	52.89 PK	76.00	-23.11	1.70 H	20	57.43	-4.54
2	1197.11	35.70 AV	56.00	-20.30	1.70 H	20	40.24	-4.54
3	2191.11	46.59 PK	76.00	-29.41	1.00 H	178	46.12	0.47
4	2191.11	33.51 AV	56.00	-22.49	1.00 H	178	33.04	0.47
5	2394.84	48.91 PK	76.00	-27.09	1.00 H	109	48.71	0.20
6	2394.84	31.82 AV	56.00	-24.18	1.00 H	109	31.62	0.20

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value



Frequency Range	1GHz ~ 6GHz	Detector Function & Bandwidth	Peak (PK) / Average (AV), 1MHz
Tested by	Kai Chu	Environmental Conditions	23℃, 71%RH
Test Date	2020/7/31		

	Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	1059.65	49.88 PK	76.00	-26.12	1.52 V	135	54.80	-4.92	
2	1059.65	33.23 AV	56.00	-22.77	1.52 V	135	38.15	-4.92	
3	1194.59	51.65 PK	76.00	-24.35	1.35 V	138	56.20	-4.55	
4	1194.59	34.41 AV	56.00	-21.59	1.35 V	138	38.96	-4.55	
5	2391.58	48.41 PK	76.00	-27.59	1.00 V	182	48.20	0.21	
6	2391.58	32.81 AV	56.00	-23.19	1.00 V	182	32.60	0.21	

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
 - Pre-Amplifier Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value

8 Electrostatic Discharge Immunity Test (ESD)

8.1 Test Specification

Basic Standard: EN 61000-4-2

Discharge Impedance: 330 ohm / 150 pF

Discharge Voltage: Air Discharge: ±2, ±4, ±8 kV (Direct)

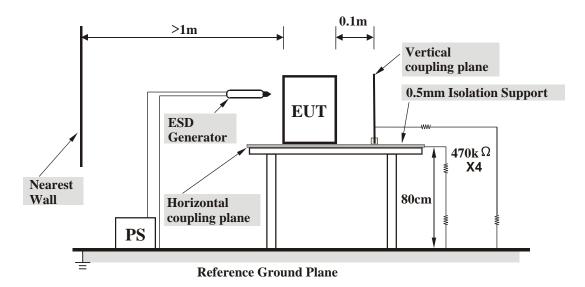
Contact Discharge: ±2, ±4, ±6 kV (Direct/Indirect)

Number of Discharge: Minimum 20 times at each test point

Discharge Mode: Single Discharge
Discharge Period: 1-second minimum

8.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
ELECTROSTATIC DISCHARGE (EMTEST)	Dito	V0701102114	Dec. 02, 2019	Dec. 01, 2020


Notes: 1. The test was performed in Hwa Ya ESD Room 1.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

8.3 Test Arrangement

- a. Electrostatic discharges were applied only to those points and surfaces of the EUT that are accessible to users during normal operation.
- b. The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- c. The time interval between two successive single discharges was at least 1 second.
- d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the EUT.
- e. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f. Air discharges were applied with the round discharge tip of the discharge electrode approaching the EUT as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator was removed from the EUT and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- g. At least ten single discharges (in the most sensitive polarity) were applied to the Horizontal Coupling Plane at points on each side of the EUT. The ESD generator was positioned at a distance of 0.1 meters from the EUT with the discharge electrode touching the HCP.
- h. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the **Vertical Coupling Plane** in sufficiently different positions that the four faces of the EUT were completely illuminated. The **VCP** (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the EUT.

Table-top Equipment

The configuration consisted of a wooden table 0.8 meters high standing on the Ground Reference Plane. The GRP consisted of a sheet of aluminum at least 0.25mm thick, and 2.5 meters square connected to the protective grounding system. A Horizontal Coupling Plane (1.6m x 0.8m) was placed on the table and attached to the GRP by means of a cable with $940 \text{k}\Omega$ total impedance. The equipment under test, was installed in a representative system as described in section 7 of EN 61000-4-2, and its cables were placed on the HCP and isolated by an insulating support of 0.5mm thickness. A distance of 1-meter minimum was provided between the EUT and the walls of the laboratory and any other metallic structure.

8.4 Test Results

Input Power	230 Vac, 50 Hz	Tested by	Vincent Yang
Environmental Conditions	25 °C, 50 % RH 986 mbar	Test Date	2020/08/05

	Test Results of Direct Application								
Discharge Level (kV)	Polarity (+/-)	Test Point	st Point Contact Discharge Air Discharge		Performance Criterion				
2, 4, 8	+/-	6-7	NA	Note 1	А				
2, 4	+/-	8-13	NA	Note 1	А				
8	+/-	8-13	NA	Note 2	В				
2	+/-	1-5	Note 1	NA	Α				
4, 6	+/-	1-5	Note 2	NA	В				

Description of test points of direct application: Please refer to following page for representative mark only.

	Test Results of Indirect Application								
Discharge Polarity Level (kV) (+/-) Test Point Horizontal Coupling Plane Plane Plane Preformance Criterion									
2	+/-	Four Sides	Note 1	Note 1	Α				
4, 6 +/- Four Sides Note 2 Note 2 B									

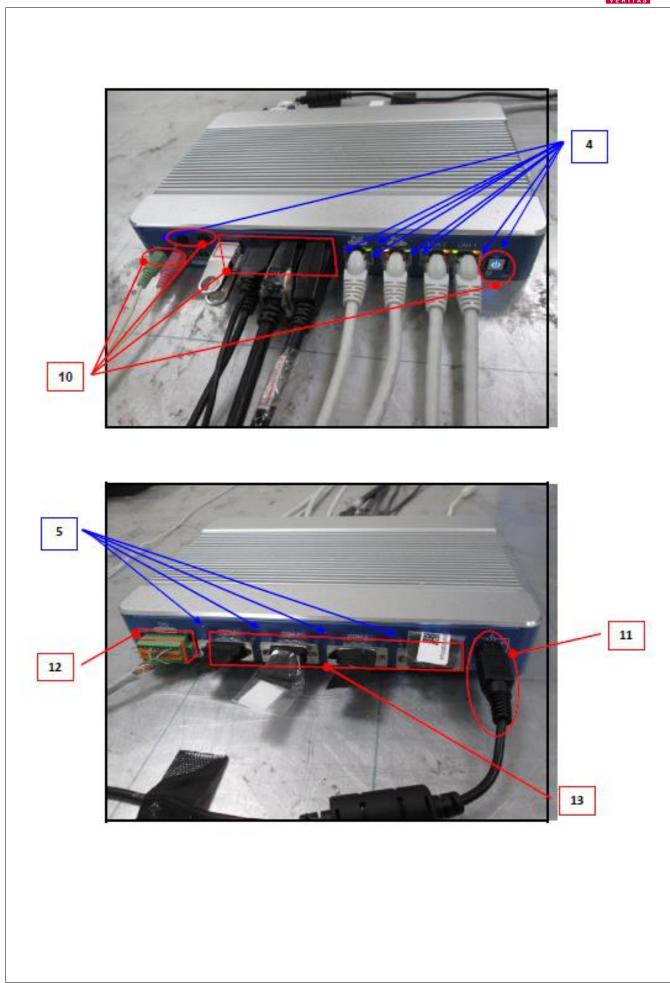
Description of test points of indirect application:

1. Front side

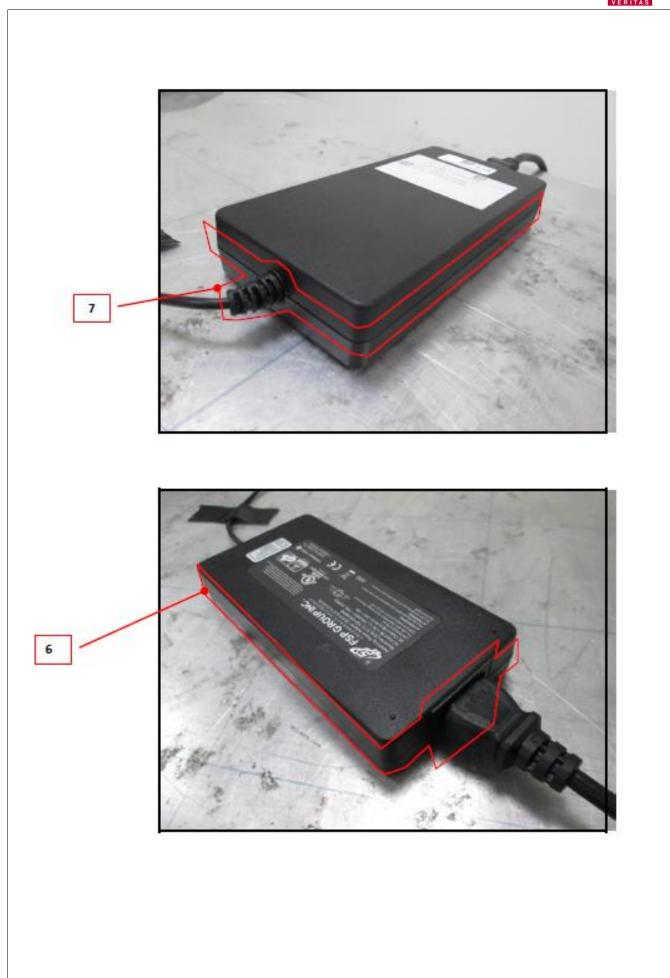
2. Rear side

3. Right side

4. Left side


Note: 1. The EUT function was correct during the test.

2. There were disturbance noises on screen during the test, but self-recoverable after the test.



Description of Test Points

9 Radiated, Radio-frequency, Electromagnetic Field Immunity Test (RS)

9.1 Test Specification

Basic Standard: EN 61000-4-3

80-800 MHz, 20V/m1

Frequency Range, Field

Strength:

800-1000 MHz, 20V/m 1400-2000 MHz, 10V/m

2000-2700 MHz, 5V/m

5100-6000 MHz, 3V/m

Modulation: 1kHz Sine Wave, 80%, AM Modulation Frequency Step: 1 % of preceding frequency value

Polarity of Antenna: Horizontal and Vertical

Antenna Height: 1.55m

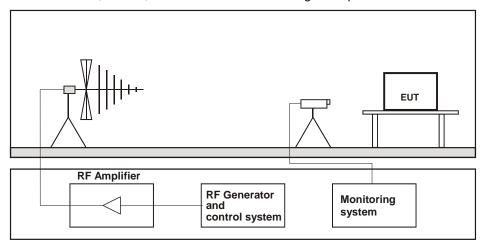
Dwell Time: 3 seconds

Note 1: This limit applies to equipment mounted in the passenger compartments, drivers cab or external to the rolling stock (roof, underframe). For equipment mounted in all other areas a severity level of 10 V/m may be used.

9.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
BONN Power Amp	BLMA 1060-100/50D	118694	NA	NA
BBA Power Amp	B250C125	101011	NA	NA
Power Sensor	NRP-Z91	101572	May 22, 2020	May 21, 2021
Power Sensor	NRP-Z91	101573	May 22, 2020	May 21, 2021
Signal Generator	SMB100A	105801	Dec. 03, 2019	Dec. 02, 2020
R&S Software	EMC32 Version 8.52.0	NA	NA	NA
Stacked Log-Per Antenna	STLP9149	9149-141	NA	NA
High GAIN LOG-Periodic Antenna	HL046E	100114	NA	NA

Notes: 1. The test was performed in Hwa Ya RS Room 2.


- 2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. The transmit antenna was located at a distance of 1.5 meters / 3 meters from the EUT.

9.3 Test Arrangement

The test procedure was in accordance with EN 61000-4-3.

- a. The testing was performed in a modified semi-anechoic chamber.
- b. The frequency ranges and field strength levels are 80-800 MHz, 20V/m, 800-1000 MHz, 20V/m, 1000-2200 MHz, 10V/m, 2200-2700 MHz, 5V/m and 5100-6000 MHz, 3V/m with the signal 80% amplitude modulated with a 1kHz sine wave.
- c. The test was performed with the EUT exposed to both vertically and horizontally polarized fields on each of the four sides.
- d. For 80 MHz to 1000 MHz, 20V/m, UFA size is in 0.5m*0.5m grid steps.

Table-top Equipment

The EUT installed in a representative system as described in section 7 of EN 61000-4-3 was placed on a non-conductive table 0.8 meters in height. The system under test was connected to the power and signal wire according to relevant installation instructions.

9.4 Test Results

Input Power	230 Vac, 50 Hz	Tested by	Vincent Yang
Environmental Conditions	25 °C, 58% RH	Test Date	2020/07/31

Frequency (MHz)	Polarity	rity Azimuth(°)	Applied Field Strength		Test Distance (m)	Observation	Performance Criterion
(1711-12)			(V/m)	Modulation	Distance (III)		Cillenon
80 - 800	V&H	0, 90, 180, 270	20	80% AM (1kHz)	1.5	Note 1	А
800 - 1000	V&H	0, 90, 180, 270	20	80% AM (1kHz)	1.5	Note 1	А
1400 - 2000	V&H	0, 90, 180, 270	10	80% AM (1kHz)	3	Note 1	А
2000 - 2700	V&H	0, 90, 180, 270	5	80% AM (1kHz)	3	Note 1	А
5100 - 6000	V&H	0, 90, 180, 270	3	80% AM (1kHz)	3	Note 1	А

Note: 1. The EUT function was correct during the test.

10 Electrical Fast Transient/Burst Immunity Test (EFT)

10.1 Test Specification

Basic Standard: EN 61000-4-4

Test Voltage: Signal & communication, process measurement & control ports: ±2kV,

Capacitive clamp

Battery referenced ports (except at the output of energy sources), Auxiliary a.c. power input ports (rated voltage ≤ 400 Vrms): ±2kV

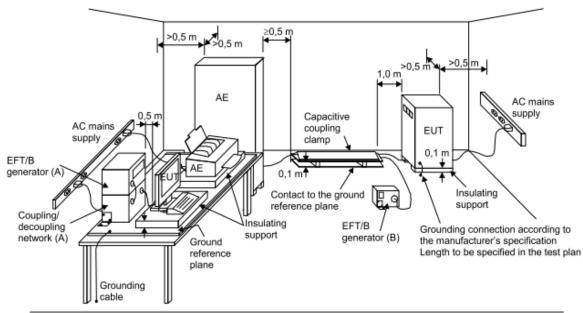
Impulse Repetition Frequency: 5kHz

Impulse Wave Shape: 5/50 (T_r/T_h) ns

Burst Duration: 15 ms
Burst Period: 300 ms
Test Duration: 1 min.

10.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
EFT Generator TESEQ	NSG 3040	2251	Mar. 20, 2020	Mar. 19, 2021
Capacitive Coupling clamp EMC-Partner	CN-EFT1000	364	Mar. 20, 2020	Mar. 19, 2021
EFT Adapter WONPRO	WA	EF1Ada-001	NA	NA
Three-phase coupling decoupling network TESEQ	CDN 3043-C32	5007	Mar. 20, 2020	Mar. 19, 2021


Notes: 1. The test was performed in Hwa Ya EFT Room 1.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

10.3 Test Arrangement

- a. Both positive and negative polarity discharges were applied.
- b. The distance between any coupling devices and the EUT should be 0.5 m for table-top equipment testing, and 1.0 m for floor standing equipment.
- c. The duration time of each test sequential was 1 minute.
- d. The transient/burst waveform was in accordance with EN 61000-4-4, 5/50 ns.

IEC 645/12

Note:

- (A) location for supply line coupling
- (B) location for signal lines coupling

10.4 Supplementary Information

The requirement followed by the manufacturer's specification.

10.5 Test Results

Input Power	230 Vac, 50 Hz	Tested by	Vincent Yang
Environmental Conditions	25 °C, 50 % RH	Test Date	2020/08/05

Input AC power port

Voltage (kV)	Test Point	Polarity (+/-)	Observation	Performance Criterion
2	L1	+/- Note 1		A
2	L2	+/-	Note 1	Α
2	PE	+	Note 1	A
2	PE	-	Note 2	PASS (B)
2	L1-L2-PE	+/-	Note 2	PASS (B)

Signal / telecommunication port

Voltage (kV)	Test Point	Polarity (+/-)	Observation	Performance Criterion
2	LAN 1	+/-	Note 2	PASS (B)
2	LAN 2	+/-	Note 2	PASS (B)
2	LAN 3 (POE)	+/-	Note 2	PASS (B)
2	LAN 4 (POE)	+/-	Note 2	PASS (B)

Note: 1. The EUT function was correct during the test.

2. The EUT found disturbance on earphone during the test, but could be self-recoverable after the test. (Test results meets the requirements of manufacturer's Performance Criterion)

11 Surge Immunity Test

11.1 Test Specification

Basic Standard: EN/IEC 61000-4-5

Wave-Shape: Auxiliary a.c. power input ports (rated voltage ≤ 400 Vrms):

1.2/50 μs Open Circuit Voltage 8/20 μs Short Circuit Current

Test Voltage: Line to line: ±0.5kV, ±1kV,

Line to ground: ±0.5kV, ±1kV, ±2kV

output impedance of 42 Ω (40 Ω and 2 Ω generator) and a coupling

capacitance of 0,5 µF

AC Phase Angle (degree): 0°, 90°, 180°, 270°
Pulse Repetition Rate: 1 time / 60 sec.

Number of Tests: 5 positive and 5 negative at selected points

- * This test is only applicable only to ports, which according to the manufacturer's specification, may connect directly to outdoor cables.
- ** For ports where primary protection is intended, surges are applied at voltages up to 4 kV with the primary protectors fitted. Otherwise the 1 kV test level is applied without primary protection in place.

11.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Universal Surge Coupling De-Coupling Network em test	CNV 508T5	P1508149592	Aug. 20, 2019	Aug. 19, 2020
Universal Surge Coupling De-Coupling Network TESEQ	CDN HSS-2	41008	Aug. 19, 2019	Aug. 18, 2020
Modular Impulse Generator TESEQ	NSG 3060 / CDN 3061	1796 / 1554	Mar. 19, 2020	Mar. 18, 2021
Telecom surge module TESEQ	NSG 3060	1799	Mar. 19, 2020	Mar. 18, 2021

Notes: 1. The test was performed in Hwa Ya Surge Room 1.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

11.3 Test Arrangement

a. Input AC/DC Power ports:

The surge is to be applied to the EUT power supply terminals via the capacitive coupling network. Decoupling networks are required in order to avoid possible adverse effects on equipment not under test that may be powered by the same lines, and to provide sufficient decoupling impedance to the surge wave. The power cord between the EUT and the coupling/decoupling networks shall be 2 meters in length (or shorter).

For double-insulated products without PE or external earth connections, the test shall be done in a similar way as for grounded products but without adding any additional external grounded connections. If there are no other possible connections to earth, line-to-ground tests may be omitted.

- b. Signal and telecommunication ports,
 - Unshielded unsymmetrical interconnection lines:

The surge is applied to the lines via the capacitive coupling. The coupling / decoupling networks shall not influence the specified functional conditions of the EUT. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length.

Unshielded symmetrical interconnections communication lines:

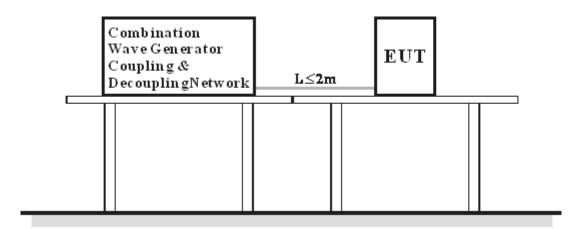
The surge is applied to the lines via gas arrestors coupling. Test levels below the ignition point of the coupling arrestor cannot be specified. The interconnection line between the EUT and the coupling/decoupling networks shall be 2 meters in length.

High speed communications lines

Prior to the test, the correct operation of the port shall be verified; the external connection shall then be removed and the surge applied directly to the port's terminals with no coupling /decoupling network. After the surge, the correct operation of the port shall again be verified.

Shielded lines:

- Direct application,


The EUT is isolated from ground and the surge is applied to its metallic enclosure; the termination (or auxiliary equipment) at the port(s) under test is grounded. This test applies to equipment with single or multiple shielded cables.

Rules for application of the surge to shielded lines:

- a) Shields grounded at both ends
 - The surge injection on the shield.
- b) Shields grounded at one end
 - If in the installation the shield is connected only at the auxiliary equipment, test shall be done in that configuration but with the generator still connected to the EUT side. If cable lengths allow, the cables shall be on insulated supports 0,1 m above the ground plane or cable tray.

For products which do not have metallic enclosures, the surge is applied directly to the shielded cable.

- Alternative coupling method for testing single cables in a multi-shield configuration, Surges are applied in close proximity to the interconnection cable under test by a wire. The length of the cable between the port(s) under test and the device attached to the other end of the cable shall be the lesser of: the maximum length permitted by the EUT's specification, or 20 m. Where the length exceeds 1 m, excess lengths of cables shall be bundled at the approximate centre of the cables with the bundles 30 cm to 40 cm in length.

11.4 Test Results

Input Power	230 Vac, 50 Hz	Tested by	Ryan Cheng
Environmental Conditions	24 °C, 50 % RH	Test Date	2020/08/03

Input AC power port

Voltage (kV)	Test Point	Polarity (+/-)	Observation	Performance Criterion
0.5, 1	L1-L2	+/-	Note 1	Α
0.5, 1, 2	L1-PE	+/-	Note 1	А
0.5, 1, 2	L2-PE	+/-	Note 1	А

Note: 1. The EUT function was correct during the test.

12 Immunity to Conducted Disturbances Induced by RF Fields (CS)

12.1 Test Specification

Basic Standard: EN 61000-4-6 Frequency Range: 0.15 MHz - 80 MHz

Voltage Level: Battery referenced ports (except at the output of energy sources),

Auxiliary a.c. power input ports (rated voltage ≤ 400 Vrms),

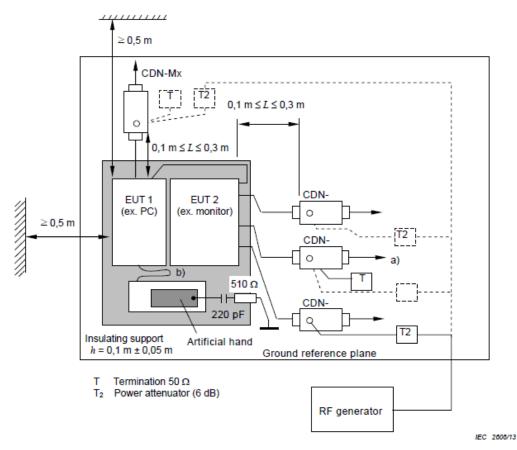
Signal & communication, process measurement & control ports: 10 V

Modulation: 1kHz Sine Wave, 80%, AM Modulation Frequency Step: 1 % of preceding frequency value

Dwell Time 3 seconds

12.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
FCC POWER LINE COUPLING DECOUPLING NETWORK	FCC-801-M3-25A	03056	Mar. 04, 2020	Mar. 03, 2021
FCC SIGNAL LINE POWER LINE COUPLING DECOUPLING NETWORK	F-090407-1004-1	100923	Mar. 05, 2020	Mar. 04, 2021
Coupling Decoupling Network TESEQ	CDN T8-10	43230	Mar. 04, 2020	Mar. 03, 2021
Coupling Decoupling Network TESEQ	CDN T8-10	43229	Mar. 05, 2020	Mar. 04, 2021
Coupling Decoupling Network TESEQ	CDN S751S	35791	Mar. 05, 2020	Mar. 04, 2021
EMI Injection Clamp	F203I-23MM	434	Mar. 31, 2020	Mar. 30, 2021
Amplifier Research Power Amplifier	75A250AM2	307804	NA	NA
Signal Generator ROHDE & SCHWARZ	SMB 100A	105489	Aug. 21, 2019	Aug. 20, 2020
POWER METER BOONTON	4232A	107402	Jul. 13, 2020	Jul. 12, 2021
POWER SENSOR BOONTON	51011-EMC	33105	Jul. 13, 2020	Jul. 12, 2021
POWER SENSOR BOONTON	51011-EMC	33107	Jul. 13, 2020	Jul. 12, 2021
Software	ADT_CS_V37	NA	NA	NA
6dB Attenuator	6NFNF150ATT	NA	NA	NA


Notes: 1. The test was performed in Hwa Ya CS Room 1.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

12.3 Test Arrangement

- a. The EUT shall be tested within its intended operating and climatic conditions.
- b. An artificial hand was placed on the hand-held accessory and connected to the ground reference plane.
- c. One of the CDNs not used for injection was terminated with 50 ohm, providing only one return path. All other CDNs were coupled as decoupling networks.
- d. The frequency range is swept from 150 kHz to 80 MHz, using the signal level established during the setting process and with a disturbance signal of 80 % amplitude. The signal is modulated with a 1 kHz sine wave, pausing to adjust the RF signal level or the switch coupling devices as necessary. Where the frequency is swept incrementally, the step size shall not exceed 1 % of the preceding frequency value.
- e. Attempts should be made to fully exercise the EUT during testing, and to fully interrogate all exercise modes selected for susceptibility.

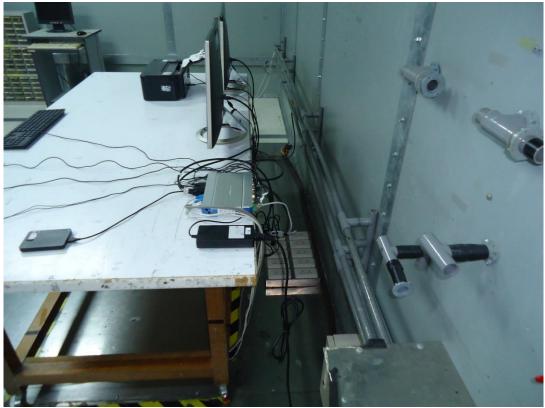
a) Only one of the CDNs not used for injection shall be terminated with 50 Ω, providing only one return path. All other CDNs shall be configured as decoupling networks.

Interconnecting cables (≤ 1 m) belonging to the EUT shall remain on the insulating support.

12.4 Test Results

Input Power	230 Vac, 50 Hz	Tested by	Timothy Chen
Environmental Conditions	25 °C, 57 % RH	Test Date	2020/07/31

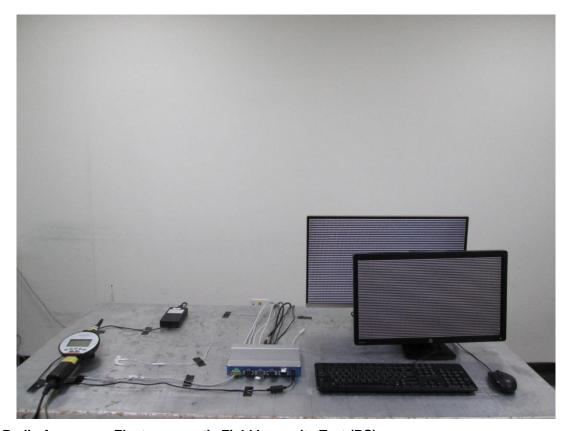
Frequency (MHz)	Level (Vrms)	Tested Line	Injection Method	Return Path	Observation	Performance Criterion
0.15 – 80	10	AC Power	CDN-M3	CDN-T8	Note 1	Α
0.15 – 80	10	LAN 1	CDN-T8	CDN-M3	Note 1	Α
0.15 – 80	10	LAN 2	CDN-T8	CDN-M3	Note 1	Α
0.15 – 80	10	LAN3 (POE)	CDN-T8	CDN-M3	Note 1	А
0.15 – 80	10	LAN 4 (POE)	CDN-T8	CDN-M3	Note 1	А


Note: 1. The EUT function was correct during the test.

13 Pictures of Test Arrangements

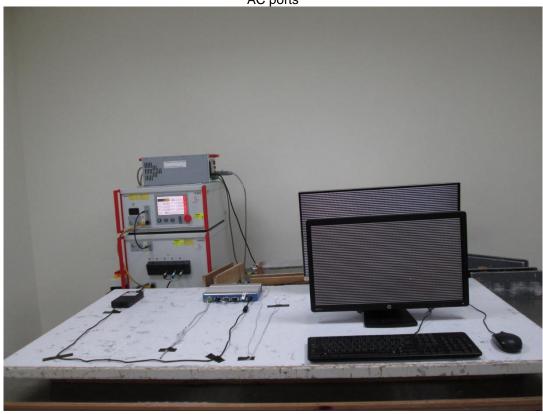
13.1 Conducted Disturbance at Auxiliary a.c. power ports

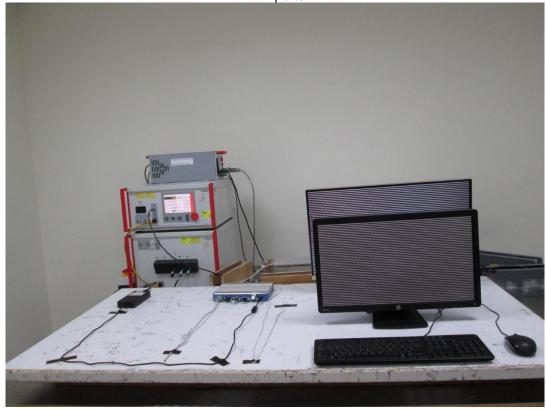
13.2 Radiated Disturbance up to 1 GHz


13.3 Radiated Disturbance above 1 GHz

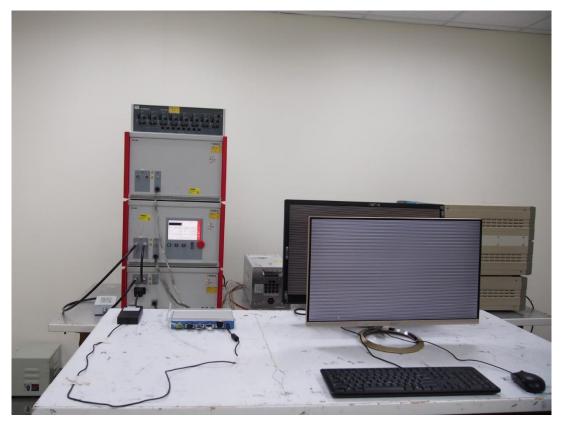


13.4 Electrostatic Discharge Immunity Test (ESD)

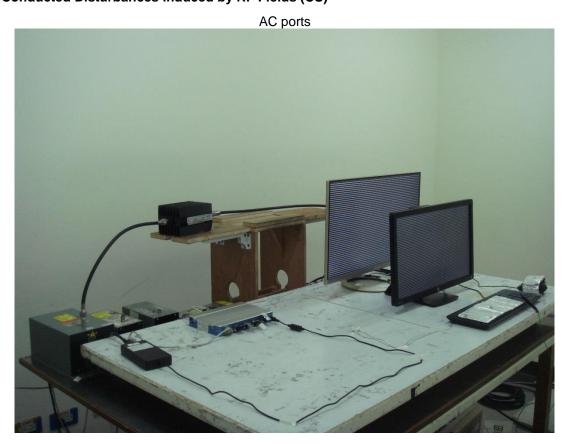

13.5 Radio-frequency, Electromagnetic Field Immunity Test (RS)



13.6 Electrical Fast Transient/Burst Immunity Test (EFT)



LAN ports



13.7 Surge Immunity Test

13.8 Conducted Disturbances Induced by RF Fields (CS)

Report No.: CEBDBO-WTW-P20070557-1 Page No. 50 / 52 Report Format Version: 6.1.3

LAN ports

POE ports

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauVeritas.com
Web Site: www.bureauVeritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---